Ugrás a tartalomra
science.uni-obuda.hu logó
  • Címlap
  • Szerzők
  • Kulcsszavak
Címlap » Publications

Function Approximation Performance of Fuzzy Neural Networks Based on Frequently Used Fuzzy Operations and a Pair of New Trigonometric Norms

CímFunction Approximation Performance of Fuzzy Neural Networks Based on Frequently Used Fuzzy Operations and a Pair of New Trigonometric Norms
Közlemény típusaConference Paper
Kiadás éve2010
Kiadás nyelveEnglish
Oldalszám1514-1521
SzerzőkGál, L., R. Lovassy, and L. T. Kóczy
Konferencia neveIEEE World Congress on Computational Intelligence, WCCI
Konferencia helyszíneBarcelona, Spain
Összefoglalás

A new triangular t-norm and t-conorm are presented. The new fuzzy operations combined with the standard negation are applied in a practical problem, namely, they are proposed as suitable triangular norms for defining a fuzzy flip-flop based neuron. Other fuzzy J-K and D flip-flop based neurons are constructed by using algebraic, Łukasiewicz, Yager, Dombi and Hamacher connectives. The function approximation performance of a Fuzzy Neural Networks (FNN) built up from various fuzzy neurons are evaluated using six increasingly more complicated problems: various sine waves, battery cell charging characteristics, two dimensional trigonometric functions and a six dimensional benchmark problem. It is shown that the new norms lead to FNNs with better approximation properties in some cases than all the previous ones.

Jelenlévő felhasználók

Jelenleg 0 felhasználó és 58 vendég van a webhelyen.